ОХНММеталлы Russian Metallurgy

  • ISSN (Print) 0869-5733
  • ISSN (Online) 3034-5391

Кинетика высокотемпературной нитридизации сплавов на основе Zr-U

Код статьи
10.31857/S0869573323030096-1
DOI
10.31857/S0869573323030096
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 3
Страницы
66-72
Аннотация
Установлены кинетические закономерности образования нитридов и представлена последовательность структурных превращений, характеризующих высокотемпературную (при 1900 °C) нитридизацию сплавов Zr-U, содержащих 2 и 5 мас.% U, в интервале от 3,5 до 60 мин. В ходе высокотемпературного насыщения азотом для каждого состава происходит распад твердого раствора (Zr,U) с образованием композитных структур ZrN-(ZrN1- n /U х Э у /U)-ZrN (где Э - О, N; n , x , y - стехиометрические коэффициенты). При распаде твердого раствора образуется нитрид циркония и выделяется фаза металлического урана, аккумулирующего в центральной части образца содержащиеся в исходном твердом растворе примеси. Кинетические кривые для температуры 1900 °C аппроксимируются экспоненциальным законом и соответствуют нитридизации циркония. Скорость нитридизации твердого раствора (Zr,U) возрастает с увеличением содержания урана. Для завершения процесса образования компактного нитрида твердого раствора (Zr,U)N стехиометрического состава необходимо повышать температуру и увеличивать длительность реакции.
Ключевые слова
нитрид циркония керамика твердый раствор (Zr,U) нитридизация кинетика насыщения окислительное конструирование
Дата публикации
01.03.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
18

Библиография

  1. 1. Wuchina, E. Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and aHf(N) / E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort, F. Guitierrez-Mora //j. Mater. Sci. 2004. V.39. №19. P.5939-5949.
  2. 2. Dong, Sh. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage / Dong Sh., Chen X., Gu L., Zhou X., Xu H., Wang H., Liu Zh., Han P., Yao J., Wang L., Cui G., Chen L. // ACS Appl. Mater.Interfaces. 2011. V.3. №1. P.93-98. DOI: 10.1021/am100951h.
  3. 3. Bl‡b, U.W. Bulk titanium nitride ceramics-Significant enhancement of hardness by silicon nitride addition, nanostructuring and high pressure sintering / U.W. Bl‡b, T. Barsukova, M.R. Schwarz, A. K†hler, C. Schimpf, D. Rafaja, E.1. Kroke, U. Mˆhle, I.A. Petrusha //j. Eur. Ceram. Soc. 2015. V.35. №10. Р.2733-2744. DOI: 10.1016/j.jeurceramsoc.2015.04.005
  4. 4. Hollmer, T. Manufacturing methods for (U-Zr)N-fuels: student thesis / T. Hollmer. - Stockholm: AlbaNova University Centre. 2011. 80 p.
  5. 5. Li, J.Y. Zirconium nitride (ZrN) fibers prepared by carbothermal reduction and nitridation of electrospun PVP /zirconium oxychloride composite fibers /j.Y. Li, Y. Sun, Y. Tan, F.M. Xu, X.L. Shi, N. Ren // Chem. Eng. J. 2008. V.144. №1. P.149-152.
  6. 6. Xin, X. Photochemical synthesis of transition metal-stabilized uranium(VI) nitride complexes / Xin X., Douair I., Rajeshkumar T., Zhao Y., Wang S., Maron L., Zhu C. // Nature Communications. 2022. V.13(1). Art.3809.
  7. 7. Turner, J. UN-UB2 composite fuel material; improved water tolerance with integral burnable absorber /j. Turner, J. Buckley, R.N. Worth, M. Salata-Barnett, M.J.J. Schmidt, T.J. Abram //j. Nucl. Mater. 2022. V.559. Art.153471.
  8. 8. Zheng, L. Layer-structured Cr/CrxN coating via electroplating-based nitridation achieving high deuterium resistance as the hydrogen permeation barrier / Zheng L., Li H., Zhou J., Tian X., Zheng Z., Wang L., Wang X., Yan Y. //j. Advanc. Ceram. 2022. V.11(12). P.1944-1955.
  9. 9. Кривов, М.П. Влияние структурно-фазового состояния нитридного ядерного топлива на ресурс ТВЭЛА / М.П. Кривов, Г.А. Киреев, А.В. Тенишев // Атомная энергия. 2019. Т.127. №1. С.25-29.
  10. 10. Кинёв, Е.А. Методики материаловедческих исследований нитридного ядерного топлива / Е.А. Кинёв, А.В. Барыбин, В.Л. Панченко, В.А. Цыгвинцев // Вопр. атомн. науки и техники. Серия: Материаловедение и новые материалы. 2021. №3 (109). С.85-95.
  11. 11. Solntsev, K.A. Oxidative constructing of thin-walled ceramics (OCTWC) / K.A. Solntsev, E.M. Shustorovich, Y.A. Buslaev // Dokl. Chem. 2001. V.378. №4-6. Р.143-149.
  12. 12. Солнцев, К.А. Окислительное конструирование тонкостенной керамики (ОКТК) выше температуры плавления металла: получение оксидных волокон из волокон Al и его сплава / К.А. Солнцев, Е.М. Шусторович, А.С. Чернявский, И.В. Дуденков // ДАН. 2002. Т.385. №3. С.372-377.
  13. 13. Кузнецов, К.Б. Структура и твердость керамики, полученной в процессе высокотемпературной нитридизации циркониевой фольги / К.Б. Кузнецов, К.А. Шашкеев, С.В. Шевцов, А.И. Огарков, Н.Н. Третьяков, М.П. Саприна, А.В. Костюченко, А.С. Чернявский, В.М. Иевлев, К.А. Солнцев // Неорган. матер. 2015. Т.51. №8. С.893-900. DOI: 10.7868/S0002337X15080126
  14. 14. Kuznetsov K.B., Shashkeev K.A., Shevtsov S.V., Ogarkov A.I., Tretyakov N.N., Saprina M.P., Kostyuchenko A.V., Chernyavskii A.S., Ievlev V.M., Solntsev K.A. Structure and hardness of ceramics produced through high-temperature nitridation of zirconium foil // Inorg. Mater. 2015. V.51. №8. P.820-827. https://doi.org/10.1134/S0020168515080129
  15. 15. Sheldon, R.I. The U-Zr (uranium-zirconium) system / R.I. Sheldon, D.E. Peterson // Bull. Alloy Phase Diagrams. 1989. V.10. №2. P.165-171.
  16. 16. Powder diffraction file. Alphabetical index inorganic compounds. - Pensilvania: ICPDS, 1997.
  17. 17. Кузнецов, К.Б. Кинетика насыщения циркония азотом в процессе высокотемпературной нитридизации / К.Б. Кузнецов, И.А. Ковалев, В.Ю. Зуфман, А.И. Огарков, С.В. Шевцов, А.А. Ашмарин, А.С. Чернявский, К.А. Солнцев // Неорган. матер. 2016. Т.52. №6. С.609-611. DOI: 10.7868/S0002337X16060075.
  18. 18. Kuznetsov K.B., Kovalev I.A., Zufman V.Yu., Ogarkov A.I., Shevtsov S.V., Ashmarin A.A., Chernyavskii A.S., Solntsev K.A. Kinetics of zirconium saturation with nitrogen during high-temperature nitridation // Inorg. Mater. 2016. V.52. №6. P.558-560. DOI: 10.1134/S0020168516060078.
  19. 19. Kovalev, I.A.Compositional evolution of zirconium and niobium in the process of high-temperature nitridation of Zr-Nb alloys / I.A. Kovalev, G.P. Kochanov, L.O. L'vov, S.V. Shevtsov, S.V. Kannikin, A.N. Sitnikov, S.S. Strel'nikova, A.S. Chernyavskii, K.A. Solntsev // Mendeleev Communications. 2022. V.32. Is.4. P.498-500. https://doi.org/10.1016/j.mencom.2022.07.022.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека