RAS Chemistry & Material ScienceМеталлы Russian Metallurgy

  • ISSN (Print) 0869-5733
  • ISSN (Online) 3034-5391

OSOBENNOSTI STRUKTURY I SVOYSTV ZhAROPROChNOGO NIKELEVOGO SPLAVA AZhK, POLUChENNOGO METODOM SELEKTIVNOGO LAZERNOGO SPLAVLENIYa

PII
10.31857/S0869573324066774-1
DOI
10.31857/S0869573324066774
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
67-74
Abstract
Представлены результаты исследований структуры и свойств образцов, изготовленных из сплава АЖК по технологии селективного лазерного сплавления (СЛС). Структуру образцов исследовали методами оптической, растровой и просвечивающей электронной микроскопии. Установлено, что структура СЛС-образцов состоит из столбчатых зерен, сформированных в результате эпитаксиального роста, закристаллизовавшихся ванн расплава и дефектов структуры в виде микропор в количестве до 0,06%. Для модификации структуры СЛС-образцов и увеличения механических свойств на растяжение применяли комплексную постобработку, состоящую из горячего изостатического прессования (ГИП) и термической обработки (ТО). В результате проведения ГИП и ТО для СЛС-образцов отмечено двукратное уменьшение их пористости, выделение мелкодисперсной γ'-фазы в количестве до 57% и карбидов типа МС, Cr23С6, что, в свою очередь, обеспечивает максимальный уровень прочности на растяжение (σв = 1395 МПа, σ0,2 = 925 МПа) в сочетании с высокой пластичностью (δ = 21,6%) при комнатной температуре.
Keywords
Date of publication
01.06.2024
Year of publication
2024
Number of purchasers
0
Views
22

References

  1. 1. Mostafaei, A. Additive manufacturing of nickel-based superalloys : A state-of-the-art review on process-structuredefect-property relationship / A. Mostafaei, R. Ghiaasiaan, I.-T. Ho, S. Strayer, K. Chang, N. Shamsaei, S. Shao, S. Paul, A. Yeh, S. Tin, A.C. To // Progress in Mater. Sci. 2023. V.136. Art.101108. ISSN 0079-6425. https://doi.org/10.1016/j.pmatsci.2023.101108
  2. 2. Baskov, F.A. The influence of post heat treatments on the evolution of microstructure and mechanical properties of EP741NP nickel alloy produced by laser powder bed fusion / F.A. Baskov, Zh.A. Sentyurina, Yu.Yu. Kaplanskii, I.A. Logachev, A.S. Semerich, E.A. Levashov // Mater. Sci. Eng. 2021. V.817. Art.141340. https://doi.org/10.1016/j.msea.2021.141340.
  3. 3. Евгенов, А.Г. Структура и механические свойства жаропрочных сплавов ВЖ159 и ЭП648, полученных методом селективного лазерного сплавления / А.Г. Евгенов, М.А. Горбовец, С.М. Прагер // Авиац. матер. и технол. 2016. V.43. №S1. С.8—15. DOI : 10.18577/2071-9140-2016-0-S1-8-15
  4. 4. Baskov, F.A. Structure and properties evolution of AZhK superalloy prepared by laser powder bed fusion combined with hot isostatic pressing and heat treatment / F.A. Baskov, Z.A. Sentyurina, P.A. Loginov, M.Y. Bychkova, I.A. Logachev, E.A. Levashov // Metals. 2023. №13. Art.1397. https://doi.org/10.3390/met13081397.
  5. 5. Sukhov, D.I. Особенности получения высокохромистых сплавов на основе никеля методом селективного лазерного сплавления / D.I. Sukhov, Yu.Yu. Kaplansky, A.M. Rogalev, S.E. Kurkin // Scientific and Techn. J. «Proceedings of VIAM». 2023. dx.doi.org/ 10.18577/2307-6046-2023-0-1-15-27.
  6. 6. Sanchez, S. Powder bed fusion of nickel-based superalloys : A review / S. Sanchez, P. Smith, Z. Xu, G. Gaspard, C.J. Hyde, W.W. Wits, I.A. Ashcroft, H. Chen, A.T. Clare // Intern. J. Machine Tools and Manufacture. 2021. V.165. Art.103729. ISSN 0890-6955. https://doi.org/10.1016/j.ijmachtools.2021.103729.
  7. 7. Lu, Y. Effect of laser power on microstructure and mechanical properties of K418 nickel-based alloy prepared by selective laser melting / Y. Lu, Y. Zhou, P. Wen, F. Luo, J. Cao, Y. Xu, S. Wang, X. Li, X. Zhang, W. Li // J. Mater. Res. Techn. 2023. V.27. P.2964—2975. ISSN 2238-7854. https://doi.org/10.1016/j.jmrt.2023.10.189.
  8. 8. Wei, B. Effect of heat treatments on the microstructure and mechanical properties of Renй 104 superalloy manufactured by selective laser melting / B. Wei, H. Ji, J. Guo // Mater. Characterization. 2023. V.200. Art.112838. ISSN 1044-5803. https://doi.org/10.1016/j.matchar.2023.112838.
  9. 9. Chang, K. Effect of heat treatment on microstructure and mechanical properties of GH4099 superalloy fabricated by selective laser melting / K. Chang, L. Ma, P. Li, J. Lu, X. You, Y. Zhang, Y. Tan // J. Alloys Compounds. 2023. V.934. Art.167813. ISSN 0925-8388. https://doi.org/10.1016/j.jallcom.2022.167813.
  10. 10. Liu, L. Crack inhibition and mechanical property enhancement of a CM247LC alloy fabricated by laser powder bed fusion through remelting strategy / L. Liu, D. Wang, G. Deng, C. Han, H. Zhou, C. Tan, Y. Long, Z. Liu, M. Zhang, C. Yang, Y. Yang // Mater. Characterization. 2024. Art.114073. ISSN 1044-5803. https://doi.org/10.1016/j.matchar.2024.114073.
  11. 11. Jiang, D. Investigation of a novel laser powder bed fusion nickel-based superalloy with Hf, Y addition : Melt characteristic, microstructure and mechanical properties / D. Jiang, Y. Zhang, R. Zhou, Z. Liu // Mater. Sci. Eng. A. 2024. V.908. Art.146744. ISSN 0921-5093. https://doi.org/10.1016/j.msea.2024.146744.
  12. 12. Vražina, T. Fatigue lifetime assessment and crack propagation of Ni-based VDM alloy 699 XA produced by additive manufacturing / T. Vražina, I. Šulak, B. Nowak, B. Verma, U. Krupp, T. Kruml // Procedia Structural Integrity. 2024. V.52. P.43—51. ISSN 24523216. https://doi.org/10.1016/j.prostr.2023.12.005.
  13. 13. Attaran, M. The rise of 3D printing : the advantages of additive manufacturing over traditional manufacturing / M. Attaran // Bus. Horiz. 2017. V.60. №5. P.677—688. http://dx.doi.org/10.1016/j.bushor.2017.05.011.
  14. 14. Gonçalves s, A. Environmental and economic sustainability impacts of metal additive manufacturing : A study in the industrial machinery and aeronautical sectors / A. Gonç alves, B. Ferreira, M. Leite, I. Ribeiro // Sustainable Production and Consumption. 2023. V.42. P.292—308. ISSN 2352-5509. https://doi.org/10.1016/j.spc.2023.10.004.
  15. 15. Despeisse, M. Sustainability in additive manufacturing, encyclopedia of sustainable technologies ; 2 nd. ed. / M. Despeisse, T. Hajali, E. Hryha. — [S.l.] : Elsevier, 2024. P.533—547. ISBN 9780443222870. https://doi.org/10.1016/B978-0-323-90386-8.00123-6.
  16. 16. Li, X. Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting / Li X., Shi J.J., Wang C.H., Gao G.H., Russell A.M., Zhou Z.J., Li C.P., Chen G.F. // J. Alloys Comp. 2018. V.764. P.639—649.
  17. 17. Vaghefi, E. Volumetric defect classification in nanoresolution X-ray computed tomography images of laser powder bed fusion via deep learning / E. Vaghefi, S. Hosseini, M. Azimi, A. Shmatok, R. Zhao, B. Prorok, E. Mirkoohi // J. Manufact. Proc. 2024. V.121 P.499—511. ISSN 1526-6125. https://doi.org/10.1016/j.jmapro.2024.05.030.
  18. 18. Chowdhury, S. Laser powder bed fusion : a state-oftheart review of the technology, materials, properties & defects, and numerical modeling / S. Chowdhury, N. Yadaiah, C. Prakash, S. Ramakrishna, S. Dixit, L.R. Gupta, D. Buddhi // J. Mater. Res. Techn. 2022. V.20. P.2109—2172. ISSN 2238-7854. https://doi.org/10.1016/j.jmrt.2022.07.121.
  19. 19. Cloots, M. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles / M. Cloots, P.J. Uggowitzer, K. Wegener // Mater. Design. 2016. V.89. P.770—784. https://doi.org/10.1016/j.matdes.2015.10.027.
  20. 20. Chen, Y. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling / Chen Y., Lu F., Zhang K., Nie P., Hosseini S.R.E., Feng K., Li Zh. // J. Alloys Comp. 2016. V.670. P.312—321. https://doi.org/10.1016/j.jallcom.2016.01.250.
  21. 21. Moussaoui, K. Effects of selective laser melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties / K. Moussaoui, W. Rubio, M. Mousseigne, T. Sultan, F. Rezai // Mater. Sci. Eng. A. 2018. V.735. P.182—190.
  22. 22. Zhang, H. Enhancing microstructural control, tribological and electrochemical performances of laser powder bed fusion processed nickel superalloys through in situ remelting / H. Zhang, Y. Wang, Z. Wang, C. Wang, K. Luo, M. Guo, P. Zhang, J. Lu, W. Xue // J. Alloys Comp. 2024. V.980. Art.173608. ISSN 0925-8388. https://doi.org/10.1016/j.jallcom.2024.173608.
  23. 23. Rosenthal, I. The influence of the melt pool structure on the mechanical properties of laser powder bed fusion nickel superalloy 625 / I. Rosenthal, J.S. Weaver, S. Moylan // Mater. Today Communications. 2023. V.36. Art.106810. ISSN 2352-4928. https://doi.org/10.1016/j.mtcomm.2023.106810.
  24. 24. Unocic, K.A. High-temperature performance of N07718 processed by additive manufacturing / K.A. Unocic, L.M. Kolbus, R.R. Dehoff, S.N. Dryepondt, B.A. Pint // Corrosion NACE. — Texas. 2014. March 9—13. Paper №4478.
  25. 25. Gribbin, S. Low cycle fatigue behavior of direct metal laser sintered Inconel alloy 718 / S. Gribbin, J. Bicknell, L. Jorgensen, I. Tsukrov, M. Knezevic // Intern. J. Fatigue. 2016. №08. P.156—167. https://doi.org/10.1016/j.ijfatigue.2016.08.019.
  26. 26. Aydinoz, M.E. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading / M.E. Aydinoz, F. Brenne, M. Schaper, C. Schaak, W. Tillmann, J. Nellesen, T. Niendorf // Mater. Sci. Eng. A. 2016. V.669. P.246—258. https://doi.org/10.1016/j.msea.2016.05.089.
  27. 27. Логунов, А.В. Жаропрочные никелевые сплавы для лопаток и дисков газовых турбин / А.В. Логунов. — Рыбинск : ООО Издат. дом «Газотурбинные технологии», 2017. 854 с.
  28. 28. Zhang, X. Microstructure evolution and mechanical properties of additively manufactured Ni-based GH4099 superalloy via hot isostatic pressing and heat treatment / X. Zhang, S. Wang, H. Liu, Y.Liang, F. Yi, J. Lin // Mater. Sci. Eng. A. 2024. V.903. Art.146696. ISSN 0921-5093. https://doi.org/10.1016/j.msea.2024.146696.
  29. 29. Sun, C. Effect of solution aging treatment on high and very high cycle fatigue properties of nickelbased alloy fabricated by laser powder bed fusion at 25 C and 650 C / C. Sun, W. Li, R. Sun, G. Liu, Z. Sun // Intern. J. Fatigue. 2024. V.187. Art.108431. ISSN 0142-1123. https://doi.org/10.1016/j.ijfatigue.2024.108431.
  30. 30. Xu, J. Effect of heat treatment temperature on the microstructural evolution of CM247LC superalloy by laser powder bed fusion / J. Xu, H. Brodin, R.L. Peng, V. Luzin, J. Moverare // Mater. Charact. 2022. V.185. Art.111742. ISSN 1044-5803. https://doi.org/10.1016/j.matchar.2022.111742.
  31. 31. Dwivedi, A. Effect of heat treatment on microstructure and mechanical properties for laser powder bed fusion of nickel-based superalloy : A review / A. Dwivedi, M.K. Khurana, Y.G. Bala, R. Paraveen // Mater. Today : Proceedings. 2023. ISSN 2214-7853. https://doi.org/10.1016/j.matpr.2023.09.093.
  32. 32. Liu, Y. A novel model of calculating particle sizes in plasma rotating electrode process for superalloys / Y. Liu, S. Liang, Z. Han, J. Song, Q. Wang // Powder Techn. 2018. V.336. P.406—414. ISSN 0032-5910. https://doi.org/10.1016/j.powtec.2018.06.002.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library