Методом лежащей капли исследовано взаимодействие железоуглеродистого расплава рельсовой стали с огнеупорной керамикой на основе Al2O3 в зависимости от длительности выдержки, температуры и состава газовой фазы. Проведены анализ микроструктуры и элементное картирование границ поперечных срезов металла и керамики. Отмечено уменьшение содержаний углерода и марганца и увеличение содержаний алюминия и хрома в металлическом расплаве после опытов. С помощью термодинамического анализа рассмотрено взаимодействие углерода стали с материалом керамики, восстановление элементов из оксидов керамики и их переход в расплав. Анализ керамики в области контакта с металлом показал снижение концентраций хрома и железа и их присутствие в керамике в виде металлических включений. Наблюдался рост «ворсинок» на грани керамической подложки при высоких температурах (1923 K), которые представляют собой нитевидные образования диаметром в несколько микрометров из чистого оксида алюминия Al2O3.
Исследован фазовый состав ниобий-редкоземельного шлака при восстановительном обжиге высокожелезистой редкометальной руды Чуктуконского месторождения - одного из самых богатых источников ниобия и редкоземельных металлов (РЗМ) в России. Установлено, что при восстановительном обжиге (1400 °C) образуются четыре основные фазы: бетафит Ca2(Nb,Ti)3O8, бритолит Ca4(Ce,La,Nd,Pr)(Si,P)6O26, шпинель с общей формулой (Mn,Fe,Mg)(Al,V)2O4 и стекловидная матрица. С увеличением расхода твердого восстановителя (кокса) с 11 до 17% массы руды меняется количественное соотношение фаз редкометального шлака, в то время как фазовый состав остается неизменным. По мере увеличения добавки кокса количество марганцевой шпинели и бритолита в шлаке (без учета стекловидной фазы) уменьшается соответственно с 46 до 27 и с 42 до 34%, а количество бетафита, наоборот, увеличивается с 12 до 39%. По данным микрозондового анализа ниобий и титан сосредоточены в бетафите и стекловидной матрице. Редкоземельные элементы распределяются по всем фазам кроме шпинели, которая не разлагается минеральными кислотами даже при высоких температурах в автоклавных условиях. Показано, что в результате удаления железа и фосфора в составе чугуна шлак, получающийся при восстановлении руды, становится в 5-6 раз более богатым редкими и редкоземельными элементами по сравнению с рудой. Это приводит к снижению материальных потоков при дальнейшем солянокислотном выщелачивании шлака с извлечением РЗМ в раствор и концентрированием ниобия и титана в остатке.
Динамную (изотропную) сталь применяют в качестве основного материала в двигателях и генераторах, работающих во вращающемся магнитном поле. Легирование кремнием, а также алюминием повышает магнитную проницаемость в слабых и средних магнитных полях, уменьшает коэрцитивную силу, потери на гистерезис и вихревые токи. Сильное влияние на магнитные свойства динамной стали оказывают неметаллические включения. Они препятствуют движению границ доменов при перемагничивании стали, а также могут служить очагами разрушения металла в результате создаваемых вокруг них напряжений. Неметаллические включения образуются в процессах рафинирования, затвердевания и охлаждения металла. В работе проведен анализ технологии производства динамной стали. Методами фракционного газового анализа и электронной микроскопии исследованы пробы металла, отобранные на основных этапах внепечной обработки, из промежуточного ковша, от непрерывно литых заготовок и горячекатаных листов для шести промышленных плавок.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation