RAS Chemistry & Material ScienceМеталлы Russian Metallurgy

  • ISSN (Print) 0869-5733
  • ISSN (Online) 3034-5391

MODELING OF THE CRYSTALLOGRAPHIC TEXTURE EVOLUTION OF ELECTRICAL STEEL DURING COLD ROLLING

PII
S30345391S0869573325022433-1
DOI
10.7868/S3034539125022433
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
24
Abstract
The Taylor texture evolution model is adapted for electrical steel in this paper by taking into account the different nature of hardening of different types of slip systems. The initial data for the modelling were the texture of annealed semi-finished hot-rolled plate before cold rolling and the components of the plastic strain tensor. Initial critical resolved shear stresses and the hardening laws of various slip systems were obtained from literature and from the analysis results of the work hardening inhomogeneity by the Generalized Pole Figures registered at each pass of the cold rolling. The analysis of the substructural state of the differently oriented crystallites showed the inhomogeneity of the accumulated distortion of the crystal lattice for grains belonging to different components of the rolling texture. The results of experimental studies of the crystallographic texture of samples after each pass during cold rolling are compared with the calculated values of the grain orientation distribution function.
Keywords
электротехническая сталь кристаллографическая текстура холодная прокатка моделирование текстурообразования субструктурная неоднородность
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Cullity, B.D. Introduction to magnetic materials / B.D. Cullity, C.D. Graham. – N.Y : John Wiley & Sons, Inc. 2009. 544 p.
  2. 2. Казаджан, Л.Б. Магнитные свойства электротехнических сталей и сплавов / Л.Б. Казаджан. – М. : Наука и технологии, 2000. 224 с.
  3. 3. Kazadzhan, L.B. Magnetic properties of electrical steels and alloys / L.B. Kazadzhan. – M. : Nauka i technologii, 2000. 224 p.
  4. 4. Yonamine, T. Correlation between magnetic properties and crystallographic texture of silicon steel / T. Yonamine, F.J.G. Landgraf // J. Magn. Magn. Mater. 2004. V.272–276. № SUPPL. 1. P.E565—E566. DOI :10.1016/j.jmmm.2003.12.1220.
  5. 5. Dou W.X. The significance of microstructure and texture on magnetic properties of non-oriented silicon steel : Strip casting versus conventional process / Dou W.X. [et al.] // Steel Res. Int. 2020. V.91. №1. P.1–10.
  6. 6. Nyyssönen, T. Higher strength steels for magnetic applications in motors / T. Nyyssönen, B. Hutchinson, A. Broddefalk // Mater. Sci. Techn. 2021. V.37. Is.10. P.883–892.
  7. 7. Гервасьева, И.В. Оценка текстурованного состояния изотропной электротехнической стали для электромобилей и влияние текстуры на основные магнитные характеристики / И.В. Гервасьева, В.А. Милютин [и др.] // ФММ. 2020. Т.1. №7. С.682–687.
  8. 8. Gervasyeva, I.V. Assessment of the textured state of the nonoriented electrical steel for electromobiles and the effect of the texture on the basic magnetic characteristics / I.V. Gervasyeva, V.A. Milyutin, F.V. Mineyev, Yu.Yu. Babushko // Phys. Metals and Metallography. 2020. V.121. P.618–623.
  9. 9. Humphreys, J. Recrystallization and related annealing phenomena / J. Humphreys [et al.] ; 3nd ed. – Oxford : Elsevier, 2017. 704 p.
  10. 10. Mehdi, M. Texture evolution of a 2,8 wt.% Si non-oriented electrical steel during hot band annealing / M. Mehdi [et al.] // IOP Conf. Ser. Mater. Sci. Eng. 2018. V.375. №1. Art.012014. 8 p. DOI :10.1088/1757-899X/375/1/012014.
  11. 11. Ling-Zi An. Comparative study on microstructure and texture evolution of low silicon non-oriented electrical steels along one-stage and two-stage cold rolling processes / Ling-Zi An, Yin-Ping Wang, Guo-Dong Wang, Hai-Tao Liu // J. Magn. Magn. Mater. 2023. V.567. Art.170358. 10 p. https://doi.org/10.1016/j.jmmm.2023.170358.
  12. 12. Yunbo Xu. Effect of cold rolling process on micro-structure, texture and properties of strip cast Fe-2,6%Si steel / Yunbo Xu, Haitao Jiao, Wenzheng Qiu, Raja Devesh Kumar Misra, Jianping Li // Materials. 2018. V.11. Art.1161. 12 p. DOI :10.3390/ma11071161.
  13. 13. Cong, J.Q. Texture evolution during recrystallization and grain growth in non-oriented electrical steel produced by compact strip production process / Cong J.Q. [et al.] // Materials. 2022. V.15. P.1–14.
  14. 14. Yinghui Zhang. The effect of grain size before cold rolling on the magnetic properties of thin-gauge non-oriented electrical steel / Yinghui Zhang, Jingfu Yang, Jing Qin, Haibin Zhao // Mater. Res. Express. 2021. V.8. P.24–27.
  15. 15. Min, K.M. Integrated crystal plasticity and phase field model for prediction of recrystallization texture and anisotropic mechanical properties of cold-rolled ultra-low carbon steels / K.M. Min, W. Jeong, S.H. Hong, C.A. Lee, P.-R. Cha, H.N. Han, M.-G. Lee // Intern. J. Plasticity. 2020. V.127. Art.102644. 27 p. DOI :10.1016/j.ijplas.2019.102644.
  16. 16. Dong-Kyu Kim. Mesoscopic coupled modeling of texture formation during recrystallization considering stored energy decomposition / Dong-Kyu Kim, Wanchuck Woo, Won-Woong Park, Yong-Taek Im, A. Rollett // Computational Mater. Sci. 2017. V.129. P.55–65. http://dx.doi.org/10.1016/j.commatsci.2016.11.048.
  17. 17. Bunge, H.J. Texture analysis in materials science / H.J. Bunge. – L. : Butterworth, 1982. 593 p.
  18. 18. Taylor, G.I. Plastic strain in metals / G.I. Taylor // J. Inst. Metals. 1938. V.62. P.307–324.
  19. 19. Lebensohn, R.A. Manual for Code Visco-Plastic Self-Consistent (VPSC), version 7d / R.A. Tomé, C.N. Lebensohn. – Los Alamos : Los Alamos National Laboratory, 2012. 114 p.
  20. 20. Roters, F. DAMASK : the D¨usseldorf advanced material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver / F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, D. Raabe // Procedia IUTAM. 2012. V.3. P.3–10.
  21. 21. Перлович, Ю.А. Структурная неоднородность текстурованных металлических материалов / Ю.А. Перлович, М.Г. Исаенкова. – М. : НИЯУ МИФИ, 2015. 396 c.
  22. 22. Perlovich, Yu.A. Structural inhomogeneity of textured metallic materials / Yu.A. Perlovich, M.G. Isaenkova. – M. : NRNU MEPhI, 2015. 396 p.
  23. 23. Benatti, E.A. Generalized pole figures from post-processing whole Debye—Scherrer patterns for microstructural analysis on deformed materials / E.A. Benatti [et al.] // J. Synchrotron Radiation. 2022. V.29. P.732–748.
  24. 24. Исаенкова, М.Г. Влияние промежуточных отжигов на различных этапах прокатки электротехнических сталей на их финальную кристаллографическую текстуру / М.Г. Исаенкова, О.А. Крымская, Р.А. Минушкин, В.А. Фесенко, Ю.А. Романова // Металлы. 2024. №1. С.53–64.
  25. 25. Isaenkova, M.G. The influence of intermediate annealings at different stages of the electrical steels rolling on their final crystallographic texture / M.G. Isaenkova, O.A. Krymskaya, R.A. Minushkin, V.A. Fesenko, Yu.A. Romanova // Metally. 2024. №1. P.53–64.
  26. 26. Matsuda, A. The plastic deformation of iron single crystals with shear tests in {110} and {112} slip systems / A. Matsuda // Trans. Jap. Inst. Metals. 1977. V.18. Is.3. P.214–220. https://doi.org/10.2320/matertrans1960.18.214.
  27. 27. Mánik, T. Review of the Taylor ambiguity and the relationship between rate-independent and rate-dependent full-constraints Taylor models / T. Mánik, B. Holmedal // Intern. J. Plasticity. 2014. №55. P.152–181.
  28. 28. MTEX Toolbox [Электронный ресурс]. Режим доступа : https://mtex-toolbox.github.io/index.html свободный.
  29. 29. Перлович, Ю.А. Исследование субструктурной неоднородности текстурованных материалов рентгеновским методом обобщенных прямых полюсных фигур / Ю.А. Перлович, М.Г. Исаенкова, О.А. Крымская, Я.А. Бабич, В.А. Фесенко // Зав. лаб. Диагностика материалов. 2020. Т.86. №5. С.22–30.
  30. 30. Perlovich, Yu.A. Study of substructural heterogeneity of textured materials by X-ray method of generalized direct pole figures / Yu.A. Perlovich, M.G. Isaenkova, O.A. Krymskaya, Y.A. Babich, V.A. Fesenko // Zavodskaya Laboratoriya. Diagnostika Materialov. 2020. V.86. №5. P.22–30.
  31. 31. Aronsson, B. Strain rate sensitivity and ductile-brittle behavior of polycrystalline Fe-Si alloys with 2,5, 3,5, and 4,5 wt pct Si / B. Aronsson // Met. Trans. 1971. V.2. P.1087–1093.
  32. 32. Rao, S.I. Solid solution softening and hardening in binary BCC alloys / S.I. Rao, C. Woodward, B. Akdim // Acta Materialia. 2023. №243. Art.118440. 13 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library