RAS Chemistry & Material ScienceМеталлы Russian Metallurgy

  • ISSN (Print) 0869-5733
  • ISSN (Online) 3034-5391

FEATURES OF THE STRUCTURE AND PROPERTIES OF POWDERS OF MECHANOSYNTHESIZED TIN BRONZES AND SINTERED MATERIALS BASED ON THEM

PII
10.31857/S086957332301010X-1
DOI
10.31857/S086957332301010X
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
69-74
Abstract
The results of studies of the structural-phase state of copper and tin mixture powders (12-20 wt.% Sn), formed during high-energy mechanical processing in a planetary ball mill, are presented. The effects of mechanochemical synthesis of composites during sintering and formation of the structure of sintered bronzes are considered. The relationship between the tin content and the formation of grain-boundary segregations and their influence on the properties of materials is shown. Thus, an increase in the concentration of tin contributes to the acceleration of grain-boundary interactions, a decrease in the rate of bulk diffusion, followed by the formation of supersaturated bulk and grain-boundary solid solutions. For the composition of the mixture with a tin content of 18-20 wt.% during mechanochemical synthesis, grain-boundary supersaturation with tin is achieved by more than 2 times, which contributes to dispersion strengthening of sintered materials based on them and provides microhardness within 2.1-3.0 GPa in a temperature range of 20-800 °С.
Keywords
медь олово оловянная бронза механохимический синтез механокомпозиты спекание под давлением дисперсионное упрочнение
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
20

References

  1. 1. Das, D. Synthesis of bulk nano-Al2O3 dispersed Cu-matrix composite using ball milled precursor / D. Das, A. Samanta, P.P. Chattopadhyay // Mater. Manuf. Proc. 2007. V.22. №4. P. 516-524.
  2. 2. Akhtar, F. Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites / F. Akhtar, S.J. Askari, K.A. Shah, X. Du, S. Guo // Mater. Charact. 2022. V. 60. №4. P. 327-336.
  3. 3. Feldshtein, E. On some mechanical properties and wear behavior of sintered bronze based composites reinforced with some aluminides microadditives / E. Feldshtein, P. Kielek, T. Kielek, L. Dyachkova, A. Letsko. // Intern. J. Appl. Mech. Eng. 2017. V.22. №2. P.293-302.
  4. 4. Celikyurek, I. Microstructure, properties and wear behaviors of (Ni3Al)p reinforced Cu matrix composites / I. Celikyurek, N.O. Korpe, T. Olcer, R. Galer //J. Mater. Sci. Technol. 2011. V. 27. №10. P. 937-943.
  5. 5. Христенко, В.В. Перспективные методы дисперсного упрочнения сплавов на основе меди для изготовления электродов контактной сварки / В.В. Христенко, Б.А. Кириевский. // Наука та iнновацiї. 2005. Т. 1. №6. С. 84-90.
  6. 6. Grigoreva, T.F. Copper-tin materials for tribotechnical purposes / T.F. Grigoreva, S.A. Kovaleva, V.I. Zhornik, S.V. Vosmerikov, P.A Vityaz, N.Z. Lyakhov // Inorgan. Mater.: Appl. Res. 2020. V.11. №3. P.744-749.
  7. 7. Мартин, Дж. Микромеханизмы дисперсионного твердения сплавов / Дж. Мартин; пер. с англ. -М.: Металлургия, 1983. 167 с.
  8. 8. Saunders, N. The Cu-Sn (copper-tin) system / N. Saunders, A.P. Miodownik // Bull. Alloy Phase Diagrams. 1990. №11. Р. 278-287.
  9. 9. Furtauer, S. The Cu-Sn phase diagram. Pt.I: New experimental results / S. Furtauer, D. Li, D. Cupid, H. Flandorfer // Intermetallics. 2013. V. 34. Р. 142-147.
  10. 10. Lyakhov, N. Nanosized mechanocomposites and solid solution in immiscible metal systems / N. Lyakhov, T. Grigorieva, A. Barinova, S. Lomayeva, E. Yelsukov, A. Ulyanov //j. Mater. Sci. 2004. V. 39. №16-17. P. 5421-5423.
  11. 11. Kaloshkin, S.D. Thermodynamic approach to the description of the steady - state phase composition of alloys obtained by mechanical alloying techniques / S.D. Kaloshkin, I.A. Tomilin, V.V. Tcherdyntsev //j. Metast. Nanocryst. Mater. 2003. V. 15-16. P.209-214.
  12. 12. Balzar, В. Voigt-function model in diffraction line-broadening analysis / В. Balzar // Microstructure analysis from diffraction; ed. R.L. Snyder, H.J. Bunge, J. Fiala. - [S.l.]: Intern. Union of Crystallography, 1999. 44 p.
  13. 13. Andrievski, R.A. Review of thermalstability of nanomaterials / R.A. Andrievski //j. Mater Sci. 2014. №49. Р. 1449-1460.
  14. 14. Караваев, М.Г. Автоматизированный трибометр с возвратно-поступательным движением / М.Г. Караваев, В.А. Кукареко // Надежность машин и технических систем. 2001. Т. 1. С. 37-39.
  15. 15. Смирнов, А.Н. Параметры зернограничной сегрегации и характеристики объемных фаз в бинарных системах с ограниченной растворимостью и химическими соединениями / А.Н. Смирнов // Изв. Челяб. науч. центра. Физич. химия и технол. неорган. матер. 2005. Вып. 1. №27. С. 41-45.
  16. 16. Клингер, Л. Модель зернограничной сегрегации в системах с ограниченной растворимостью и химическими соединениями / Л. Клингер, Б.С. Бокштейн, А.О. Родин // Изв. вузов. Чер. металлургия. 2012. Т. 55. №1. С. 38-40.
  17. 17. Cantwell, P.R. Grain boundary complexions / P.R. Cantwell, Ming Tang, Shen J. Dillon, Jian Luo, G.S. Rohrer, M.P. Harmer // Acta Materialia. 2014. V.62. P. 1-48.
  18. 18. Grain boundary diffusion and grain boundary segregation / Ed. B. Bokstein, N. Balandina. - [S.l.]: Scitec Publ. Ltd., 1998. 276 р.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library