RAS Chemistry & Material ScienceМеталлы Russian Metallurgy

  • ISSN (Print) 0869-5733
  • ISSN (Online) 3034-5391

Kinetics and Thermodynamics of Iron(III) Ion Removal from Aqueous Solutions by Dowex G-26(H) Resin

PII
10.31857/S0869573323060125-1
DOI
10.31857/S0869573323060125
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
98-104
Abstract
The factors affecting iron(III) adsorption by strongly acidic Dowex G-26(H) cation-exchange resin are studied. These factors include the adsorbent dose, pH of the solution, contact time, initial Fe(III) concentration in the solution, and temperature. Langmuir and Freundlich adsorption isotherms are constructed from the experimental results. Both isotherms quite satisfactorily describe Fe(III) adsorption by the Dowex G-26(H) adsorbent, which is indicated by high (close to unity) coefficients of determination (R2). The calculated capacity of the adsorbent ranges from 166.6 to 196.1 mg g–1 at different temperatures (T = 293–313 K). The kinetic and thermodynamic parameters of the process (ΔH°, ΔS°, ΔG°) have been determined. The positive calculated standard entropy (ΔS°) and enthalpy (ΔH°) changes suggest that the adsorption of Fe(III) ions on the resin is endothermic and spontaneous.
Keywords
Date of publication
01.06.2023
Year of publication
2023
Number of purchasers
0
Views
23

References

  1. 1. Gordan, B.W.H.Q. Gindelines for drinking organization water quality / B.W.H.Q. Gordan. - Geneva: Utah edition W.H.O, 2022. 614 p.
  2. 2. el-Sberif, I.Y. Removal of Mn(II) and Fe(II) ions from aqueous solution using precipitation and adsorption methods / I.Y. el-Sberif, N.A. Fathy, A.A. Nanna //j. Appl. Sci. Res. 2013. №9. P.233-239.
  3. 3. Касимов, А.Г. Сорбционная очистка растворов медно-никелевого производства с использованием ионитов "Pirolite" / А.Г. Касимов, Н.С. Арешина, И.Э. Мальц, Т.Р. Зинкович, М.А. Михайленко // Краткие сообщения. Сорбционные и хроматографические процессы. 2011. Т.11. №5. С.689-692.
  4. 4. Pyrzynska, K.Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles / K. Pyrzynska, M. Bystrejewski // Colloids. Surt. A. Physicochem. Eng. Asp. 2010. Is.362. P.102-109.
  5. 5. Moreira, R.F.P.M. Removal of iron from water using adsorbent carbon / R.F.P.M. Moreira, V.S. Madeira, H.J. Sose, E. Humeres // Separat. Sci. Technol. 2004. V.39. № 2. P.271-285.
  6. 6. Mohammed, A.Z. Removal of iron and manganese from groundwater sources using nano-biosorbents / A.Z. Mohammed, D. Allahyar, A.S. Behrauz // Chem. Biol. Technol. Agriculture. 2022. V.9. №3. P.1-14.
  7. 7. Ostroski, L.C. The removal of Fe(III) ions by adsorption onto zeolite columns / L.C. Ostroski, M.A. de Barros, S.D. da Silva, J.H. Dantas, P.A. Arroyo // Ads. Sci. Technol. 2007. V.25. P.757-768.
  8. 8. Vasudevan, S. Removal of iron from drinking water by electrocoagulation: adsorption and kinetics studies / S. Vasudevan, I. Sayaraj, J. Lakshmi, G. Sozhan // Korean J. Chem. Eng. 2009. V.26. P.1058-1064. DOI: 10.1007/S11814-009-0176-9.
  9. 9. Das, B. Removal of iron from groundwater by ash / B. Das, P. Hazarika, G. Saikia, H. Kalita, D.C. Goswani, H.B. Das, R.K. Datta //j. Hazard. Mater. 2007. V.141. P.834-841.
  10. 10. Salimi, A.H. Total iron removal from aqueous solution by using modified clinoptilolite / A.H. Salimi, A. Shamshiri, E. Laberi, H. Bonakdari, A. Akhbari [et al.] // Ain. Shams Eng. J. 2022. V.13. Art.101495.
  11. 11. Pandova, I. A study of using natural sorbent to reduce iron cations from aqueous solutions / I. Pandova, M. Rimar, A. Panda, S. Vilicek, M. Kusnerova, M. Harnicarova // Intern. J. Environmental Res. Publik Health. 2020. May. V.17(10). P.3686.
  12. 12. Robinson-Lora, M.A. Efficient metal removal and neutralization of acid mine drainage by crab-shell chitin under batch and continuous-flow conditions / M.A. Robinson-Lora, R.A. Brennan // Bioresour Technol. 2009. V.100. P.5063-5071.
  13. 13. Cama, J. Disolution kinetics of synthetic zeolite NaPl and Hs implication to zeolite treatment of contaminated waters /j. Cama, C. Ayora, X. Querol, J. Gemor // Env. Sci. Technol. 2005. P.4871-4878.
  14. 14. Milonjie, S. Sorption of ferric and ferrous ions on silica / S. Milonjie, S.D. Cupic, L. Gerovic // Mater. Sci. Forum. 2006. V.518. P.67-72.
  15. 15. Nguyen, V.N. Copper recovery from low concentration waste solution using DOWEX G-26 resin / Nguyen V.N., Lee Ch., Sha M.K., Yoo K., Seong S. // Hydrometallurgy. 2009. P.97237-97242.
  16. 16. Chen, W. Recycle of vanadium from aluminium slag of ferrovanadium / Chen W., Liu T., Leb Ch. // IOP. Conf. Ser.: Mater. Sci. Eng. 2020. V.720. Art.012001.
  17. 17. Chen, W. Purification of lithium carbonate from sulphate solutions through hydrogenation using the DOWEX G-26 resin / Chen W., Lee C., Ho H. // Appl. Sci. 2018. V.8. P.2252.
  18. 18. Бахвалов, А.В. Методика ускоренного определения содержания железа в воде / А.В. Бахвалов // Проблемы современной науки и образования. 2015. № 11(41). C.65-69.
  19. 19. Khezami, L. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies / L. Khezami, R. Capart //j. Hazard Mater. 2005. V.31. Is.123(1-3). P.223-231
  20. 20. Reed, B.E. Modeling Cd adsorption in single and binary adsorbent (PAC) systems / B.E. Reed, M.R. Matsumoto //j. Environmen. Eng. 1993. V.119. №2. P.332-348.
  21. 21. Адсорбция на однородной твердой поверхности. Уравнение Лэнгмюра: методические указания к выполнению расчетной лабораторной работы по дисциплинам "Поверхностные явления и дисперсные системы" и "Коллоидная химия" для студентов ИПР / сост. Е.В. Михеева. - Томск: Изд-во Томск. политех. ун-та. 2011. 36 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library