- PII
- S30345391S0869573325038896-1
- DOI
- 10.7868/S3034539125038896
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 3
- Pages
- 88-96
- Abstract
- An effective method for determining the service life of a metal shell structure under variable thermomechanical load is proposed. The stress-strain state of the structure is determined by solving a nonlinear boundary value problem of thermoplasticity for a thin-walled shell of revolution. The service life of structures under variable thermomechanical loads is determined based on the equation of low-cycle fatigue of the material. The application of the presented method is demonstrated using the example of a shell structure designed for high-temperature annealing of electrolytic steel. The temperature of the protective shell during operation can reach 1000 °C. However, this shell is made not of heat-resistant metal, but of St3 steel, which is not intended for use at such an extreme temperature. In the absence of the necessary mechanical parameters for the material of the structure at high temperatures, the prediction method is used. The found service life values for the metal shell with the mechanical parameters of the material at known temperatures are extrapolated to higher operating temperatures using neural networks.
- Keywords
- оболочка термомеханическое нагружение напряженное состояние механические параметры металла малоцикловая усталость
- Date of publication
- 30.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 8
References
- 1. COSMOS/M user’s guide, version 2.7 - Los Angeles : SRAC, 2001. 770 p.
- 2. ANSYS advanced analysis techniques guide. ANSYS release 10.0 - Canonsburg : SAS IP, 2005. 340 p.
- 3. COMSOL Multiphysics user’s guide, version 4.3 - COMSOL, 2012. 1292 p.
- 4. Norrie, D.H. The finite element method: fundamentals and applications / D.H. Norrie, G. De Vries. - New York : Academic Press, 1973. 308 p.
- 5. Zienkiewicz, O.C. The finite element method / O.C. Zienkiewicz, R.L. Tailor. - N.Y. : McGraw-Hill, 1989. 787 p.
- 6. Gallager, R. Finite element method. Fundamentals / R. Gallager. - Englewood Cliffs : Prentice Hall, 1975. 336 p.
- 7. Голованов, А.И. Метод конечных элементов в статике и динамике тонкостенных конструкций / А.И. Голованов, О.Н. Тюленева, А.Ф. Шигабутдинов. - М. : ФИЗМАТЛИТ, 2006. 392 с.
- 8. Бидерман, В.Л. Механика тонкостенных конструкций / В.Л. Бидерман. - М. : Машиностроение, 1977. 488 с.
- 9. Григоренко, Я.М. Методы расчета оболочек. Т.4. Теория оболочек переменной жесткости / Я.М. Григоренко, А.Т. Василенко. - Киев : Наукова думка, 1981. 543 с.
- 10. Grigorenko, Ya.M. Some approaches to the solution of problems on thin shell with variable geometrical and mechanical parameters / Ya.M. Grigorenko, A.T. Vasilenko // Int. Appl. Mech. 2002. V.38. №11. P.1309-1341.
- 11. Емельянов, И.Г. Контактные задачи теории оболочек / И.Г. Емельянов. - Екатеринбург : Изд. УрО РАН, 2009. 185 с.
- 12. Шевченко, Ю.Н. Методы расчета оболочек. Т.3. Теория упругопластических оболочек при неизотермических процессах нагружения / Ю.Н. Шевченко, И.В. Прохоренко. - Киев : Наукова думка, 1981. 295 с.
- 13. Shevchenko, Yu.N. Thermoviscoelastoplastic processes in the deformation of elements of a solid / Yu.N. Shevchenko // Int. Appl. Mech. 1994. V.30. №3. P.165-183.
- 14. Babeshko, M.E. Describing the thermoplastic deformation of compound shells under axisymmetric loading with allowance for the third invariant of the stress deviator / M.E. Babeshko, Yu.N. Shevchenko // Int. Appl. Mech. 2011. V.46. №12. P.1362-1371.
- 15. Петров, В.В. Расчет элементов конструкций, взаимодействующих с агрессивной средой / В.В. Петров, И.Г. Овчинников, Ю.М. Шихов. - Саратов : Изд. Сарат. ун-та, 1987. 285 с.
- 16. Яковлев, Ю.А. Модели влияния водорода на механические свойства металлов и сплавов / Ю.А. Яковлев, В.А. Полянский, Ю.С. Седова, А.К. Беляев // Вестн. Пермского нац. исслед. политехн. ун-та. Механика. 2020. №3. С.136-160.
- 17. Емельянов, И.Г. Термодиффузионная задача наводороживания стальной оболочечной конструкции / И.Г. Емельянов, В.И Миронов // Вестн. Пермского нац. исслед. политехн. ун-та. Механика. 2018. №3. С.27-35.
- 18. Emelyanov, I.G. Strength analysis of thin-wall structures operating in aggressive environments for prolonged periods / I.G. Emelyanov, A.N. Kislov // Mater. Phys. Mechanics. 2022. V.50. Is.3. P.475-484. DOI : 10.18149/MPM.5032022_10.
- 19. Ivanyts’kyi, Ya.L. Determination of the durability of elements of power-generation equipment with regard for the influence of working media / Ya.L. Ivanyts’kyi, O.V, Hembara, O.Ya. Chepil // Mater. Sci. 2015. V.51. №1. P.103-113. DOI : 10.1007/s11003-015-9815-y.
- 20. Трощенко, В.Т. Сопротивление материалов деформированию и разрушению. Ч.2 ; справ. пособ. / В.Т. Трощенко, А.Я. Красовский, В.В. Покровский [и др.]. - Киев : Наукова думка, 1994. 703 с.
- 21. Гусенков, А.П. Длительная и неизотермическая малоцикловая прочность элементов конструкций / А.П. Гусенков, П.И. Котов. - М.: Машиностроение, 1988. 264 с.
- 22. Nguyen, H.T. Structural strength scaling law for fracture of plastic-hardening metals and testing of fracture properties / H.T. Nguyen, A.A. Donmez, Z.P. Bazant // Extreme Mech. Lett. 2021. V.43. Art.101141. https://doi.org/10.1016/j.eml.2020.101141
- 23. Abdullah, L. Fatigue reliability and hazard assessment of road load strain data for determining the fatigue life characteristics / L. Abdullah, S.S.K. Singh, S. Abdullah, A.H. Azman, A.K. Ariffin // Eng. Failure Analysis. 2021. V.123. Art.105314. DOI : 10.1016/j.engfailanal.2021.105314.
- 24. D’Angela, D. Acoustic emission entropy: An innovative approach for structural health monitoring of fracture-critical metallic components subjected to fatigue loading / D. D’Angela, M. Ercolino // Fatigue and Fracture of Eng. Mater. Struct. 2021. V.44. №4. P.1041-1058. https://doi.org/10.1111/ffe.13412
- 25. Li, S. A proposal on ultra-low cycle fatigue damage evaluation of structural steels / S. Li, X. Xie, Q. Tian, Z. Zhang, C. Cheng // Theor. Appl. Fracture Mech. 2021. V.114. Art.102973. https://doi.org/10.1016/j.tafmec.2021.102973
- 26. Manai, A. Fatigue assessment of metallic structures under variable amplitude loading / A. Manai, M. Al-Emrani // Procedia Structural Integrity. 2019. V.19. P.12-18. https://doi.org/10.1016/j.prostr.2019.12.003
- 27. Lemzikov, A.V. Training artificial neural networks for predicting properties of steels / A.V. Lemzikov, S.P. Kundas // Informatika. 2009. №4(24). P.101-111.
- 28. Yussupova, L. Prediction of strength properties of natural fiber-porous composites by neural networks / L. Yussupova, А. Sokolovskiy, S. Munasipov, L. Kulkaeva, M. Kunelbayev // Mater. Phys. Mech. 2021. V.47. Is.4. P.613-620. DOI : 10.18149/MPM.4742021_9.
- 29. Aladjev, V.Z. Mathematica : Functional and procedural programming / V.Z. Aladjev, M.L. Shishakov, V.A. Vaganov ; 2nd ed. - [S.l.] : KDP Press, 2020. 396 p.
- 30. Емельянов, И.Г. Предельное состояние стальной конструкции при экстремальной термомеханической нагрузке / И.Г. Емельянов, А.Н. Кислов // Вестн. Пермского нац. исслед. политехн. ун-та. Механика. 2024. №2. С.59-68.
- 31. Зубченко, А.С. Марочник сталей и сплавов / А.С. Зубченко, М.М. Колосков, Ю.В. Каширский [и др.] ; 2-е изд. - М. : Машиностроение, 2003. 784 с.
- 32. Третьяков, А.В. Механические свойства металлов и сплавов при обработке давлением / А.В. Третьяков, В.И. Зюзин. - М. : Металлургия, 1973. 224 с.
- 33. Manson, S.S. Thermal stress and low-cycle fatigue / S.S. Manson. - N.Y. : McGraw-Hill, 1966. 404 p.