RAS Chemistry & Material ScienceМеталлы Russian Metallurgy

  • ISSN (Print) 0869-5733
  • ISSN (Online) 3034-5391

INVESTIGATION OF THE INFLUENCE OF SELECTIVE LASER MELTING PARAMETRES ON THE STRUCTURE AND MECHANICAL PROPERTIES OF Al-Ce-Fe-Ni-Zr ALLOY

PII
S30345391S0869573325052632-1
DOI
10.7868/S3034539125052632
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
26-32
Abstract
Samples of Al-Ce-Fe-Ni-Zr alloy were obtained by selective laser melting at scanning speeds of 700–1900 mm/s. The structure of the samples is eutectic: a solid solution based on aluminum is located inside intermetallic cells. A coarser eutectic structure with coarser cells is observed at the cell boundary. The microhardness of the samples was HV = 115–170, the tensile strength was 370–475 MPa, and the ductility was 10–23%. Residual thermal stresses
Keywords
селективное лазерное плавление аддитивные технологии алюминиевые сплавы механические характеристики макропапряжения твердость эвтектические сплавы редкоэвиальные металлы
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Белов, Н.А. Эвтектические сплавы на основе алюминия: новые системы легирования / Н.А. Белов, Е.А. Наумова, Т.К. Акопян. – М. : Издательский дом «Руда и Металлы», 2016. 256 @@Belov, N.A. Eutectic alloys based on aluminum: new alloying systems / N.A. Belov, E.A. Naumova, T.K. Akopyan. – M. : Publishing house «Ore and Metals», 2016. 256 p.
  2. 2. Белов, Н.А. Особенности микроструктуры и фазовый состав литейных сплавов системы Al-Ce-Fe-Ni-Zr / Н.А. Белов, В.С. Золоторевский // Рос. хим. журн. 2001. №5–5. С.15–22. – @@Белов, Н.А. Features of the microstructure and phase composition of casting alloys of the Al-Ce-Fe-Ni-Zr system / N.A. Belov, V.S. Zolotarevsky // Russian Chem. J. 2001. №5–5. P.15–22.
  3. 3. Rakhmonov, J.U. Solidification microstructure, aging evolution and creep resistance of laser powder-bed fused Al-7Ce-8Mg (wt.%) / J.U. Rakhmonov, D. Weiss, D.C Dunand // Additive Manufacturing. 2022. V.55. Art.102862.
  4. 4. Hesselmann, M. Effect of precipitation-forming elements in a near-eutectic Al-Ce alloy for Laser Powder Bed Fusion / M. Hesselmann, D. Knoop, J. Epp, V. Uhlenwinkel, A. Hehl, A. Toenjes // Additive Manufacturing. 2022. V.57. Art.102959.
  5. 5. Yang, Z. An additively manufactured heat-resistant Al-Ce-Sc-Zr alloy : Microstructure, mechanical properties and thermal stabilityPhase transformation and thermal stability of the laser powder bed fused high-strength and heat-resistant Al-Ce-Mg alloy / Z. Yang, Ch. Chen, D. Li, Y. Wu, Zh. Geng, V. Konakov, K. Zhou // Mater. Sci. Eng. A. 2023. V.872. Art.144965.
  6. 6. Takata, N. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments / N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi // Mater. Sci. Eng. A. 2017. V.704. P.218–228.
  7. 7. Takata, N. Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al-Si-based alloys / N. Takata, M. Liu, H. Kodaira, A. Suzuki, M. Kobashi // Additive Manufacturing. 2020. V.33. Art.101152.
  8. 8. Lui, M. Effect of annealing on anisotropic tensile properties of Al-12%Si alloy fabricated by laser powder bed fusion / M. Liu, T. Wada, A. Suzuki, N. Takata, M. Kobashi, M. Kato // Crystals. 2020. V.10. Art.1007.
  9. 9. Qi, X. Change in microstructural characteristics of laser powder bed fused Al-Fe binary alloy at elevated temperature / X. Qi, N. Takata, A. Suzuki, M. Kobashi, M. Kato // J. Mater. Sci. Tech. 2022. V.97. P.38–53.
  10. 10. Wang, W. Design of Al-Fe-Mn alloy for both high-temperature strength and sufficient processability of laser powder bed fusion / W. Wang, N. Takata, A. Suzuki, M. Kobashi, M. Kato // Additive Manufacturing. 2023. V.68. Art. 103524.
  11. 11. Zhou, L. Microstructure and mechanical properties of Zr-modified aluminum alloy 5083 manufactured by laser powder bed fusion / L. Zhou, H. Hyer, Sh. Park, H. Pan, Yu. Bai, K.P. Rice, Y. Sohn // Additive Manufacturing. 2019. V.28. P.485–496.
  12. 12. Lu, H. High-performance co-continuous Al-Ce-Mg alloy with in-situ nano-network structure fabricated by laser powder bed fusion / H. Lu, P. Peng, T. Feng, H. Gao, J. Ju, B. Wang, J. Wang, B. Sun // Additive Manufacturing. 2022. V.60. Art.103218.
  13. 13. Chernyshikhin, S.V. Structure and mechanical properties of Al-Ce-Fe alloy synthesized by LPBF method / S.V. Chernyshikhin, E.L. Dzidziguri, L.V. Fedorenko, A.A. Gromov, K.B. Larionov, M.V. Lyange, N.A. Kharitonova, E.A. Naumova, D.Yu. Ozherelkov, I.A. Pelevin, S.O. Rogachev // Metals Mater. Intern. 2024. V.30. P.3184–3201.
  14. 14. Wu, T. Microstructure and strengthening of Al-6Ce-3Ni-0,7Fe (wt.% alloy manufactured by laser powder-bed fusion / T. Wu, J.D. Poplawsky, L.F. Allard, A. Plotkowski, A. Shyam, D.C. Dunand // Additive Manufacturing. 2023. V.78. Art.103858.
  15. 15. Sisco, K. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy / K. Sisco, R.A. Michi, S. Bahl, Y. Yang, J.D. Poplawsky, L.F. Allard, R. R. Dehoff, A. Plotkowski, A. Shyam // Acta Materialia. 2022. V.227. Art.117699.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library