RAS Chemistry & Material ScienceМеталлы Russian Metallurgy

  • ISSN (Print) 0869-5733
  • ISSN (Online) 3034-5391

STUDY OF THE COMPOSITION AND PROPERTIES OF VT6 ALLOY GRANULES OBTAINED BY CENTRIFUGAL PLASMA SPRAYING

PII
S30345391S0869573325053342-1
DOI
10.7868/S3034539125053342
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
33-42
Abstract
Mathematical modeling of the motion and cooling rates of VT6 alloy powders (granules) obtained from an ingot by plasma-centrifugal spraying is performed. Calculations are performed for particles with diameters of 30, 50 and 70 µm in an inert gas environment of 90% He-10% Ar at an electrode rotation speed of 25000 min. It is shown that molten particles of all sizes solidify at close distances (~10 cm) from the molten electrode surface. The particle cooling rates at the initial stage of motion reach values of 3.6 10–1.5 10 K/s. The time intervals of particle crystallization (their complete solidification) were ~0.3–1 ms. Changes in the microstructure, microhardness, chemical and phase compositions of VT6 alloy granules obtained after separation into three fractions are studied. Using X-ray microanalysis in SEM, a uniform distribution of the main elements over the granule cross-section was noted, as well as a slight difference in the chemical composition of different fractions, which generally indicates the homogeneity of the obtained powder. It was shown that the structure of particles of different fractions differs in the parameters of the crystal lattice and is a mixture of two solid solutions, which is probably due to the difference in cooling rates and the content of alloying components. It was noted that in granules after centrifugal spraying, the microhardness values increase (compared to the original ingot), while with an increase in the average diameter of the particles, the average microhardness values decrease.
Keywords
адаптивные технологии центробежное распыление титановый сплав ВТ6 математическое моделирование микроструктура
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Добровольский, М.В. Жидкостные ракетные двигатели / М.В. Добровольский – М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. 486 c. – @@Dobrovolskiy, M.V. Liquid rocket engines / M.V. Dobrovolskiy – M.: Izd-vo MGTU im. N.E. Baumana, 2005. 486 p.
  2. 2. Пацук, Е.Б. Проблемы и перспективы развития ракетно-космической отрасли / Е.Б. Пацук, И.С. Коршакевич // Актуальные проблемы авиации и космонавтики. 2017. Т.3. №13. @@Patsuk, E.B. Problems and prospects for the development of the rocket and space industry / E.B. Patsuk, I.S. Korshakevich // Aktualnye problemy aviatsiy i kosmonavtiki. 2017. V.3. Is.13. P.392–394.
  3. 3. Криштофор, А.П. Изменение конкурентных позиций России на мировом рынке космической продукции / А.П. Криштофор // Вестник университета. 2019. №5. @@Krishtofor, A.P. Changes in Russia’s competitive positions in the global space products market / A.P. Krishtofor // Vestnik universiteta. 2019. Is.5. P.86–92.)
  4. 4. Milewski, J.O. Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry / J.O. Milewski – Springer Series in Materials Science. 2017. 343 p.
  5. 5. Логачева, А.И. Аддитивные технологии производства ответственных изделий из металлов и сплавов (обзор) / А.И. Логачева, Ж.А. Сентюрина, И.А. Логачев // Перспективные материалы. 2015. №5. C.5–15. – @@Logacheva, A.I. Additive manufacturing technologies for critical products made of metals and alloys (review) / A.I. Logacheva, Zh.A. Sentiurina, I.A. Logachev // Perspektivnye materialy. 2015. Is.5. P.5–15.)
  6. 6. Gasser, А. Laser additive manufacturing. Laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine application / А. Gasser, G. Backes, I. Kelbassa, A. Weisheit, K. Wissenbach // Laser Technik Journal. 2010. V.7. Is.2. P.58–63.
  7. 7. Carter, L.N. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy / L.N. Carter, C. Martin, Ph.J. Withers, M.M. Attallah // J. Alloys and Compounds. 2014. V.615. Р.338–347.
  8. 8. Bikas, H. Additive manufacturing methods and modeling approaches: a critical review / H. Bikas, P. Stavropoulos, G. Chryssolouris // Int. J. Adv. Manufac. Techn. 2016. V.83. Is.1–4. P.389–405.
  9. 9. Yadroitsev, I. Parametric analysis of the selective laser melting process / I. Yadroitsev, Ph. Bertrand, I. Smurov // Appl. Surf. Sci. 2007. V.253. Is.19. P.8064–8069.
  10. 10. Srivatsan, T.S. Additive Manufacturing: Innovations, Advances, and Applications / T.S. Srivatsan, T.S. Sudarshan – Boca Raton: CRC Press. 2016. 476 p.
  11. 11. Yadroitsev, I. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder / I. Yadroitsev, L. Thivillon, Ph. Bertrand, I. Smurov // Appl. Surf. Sci. 2007. V.254. Is.4. P.980–983.
  12. 12. Meier, H. Experimental studies on selective laser melting of metallic parts / H. Meier, Ch. Haberland // Mat.-wiss. u. Werkstofftech. 2008. V.39. Is.9. P.665–670.
  13. 13. Yasa, E. Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser remelting / E. Yasa, J.-P. Kruth // Procedia Eng. 2011. V.19. P.389–395.
  14. 14. Kruth, J.P. Selective laser melting of iron-based powder / J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers // J. Mater. Proc. Techn. 2004. V.149. Is.1–3. P.616–622.
  15. 15. Chen, G. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization / G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, H.P. Tang // Powd. Techn. 2018. V.333. P.38–46.
  16. 16. Sun, Yu. Comparison of virgin Ti-6Al-4V powders for additive manufacturing / Yu Sun, M. Aindow, R.J. Hebert // Add. Manufact. 2018. V.21. P.544–555.
  17. 17. Ashgriz N. Handbook of Atomization and Sprays. Theory and Applications / N. Ashgriz – Springer, 2011. 951 p.
  18. 18. Озерской, Н.Е. Получение сферических порошков сплава ВТ6 для применения в технологии селективного лазерного плавления / Н.Е. Озерской, А.А. Попович, Б.С. Ермаков // Научно-технические ведомости СПБПУ. Естественные и инженерные науки. 2019. №14. С.107–115. – @@Ozerskoi N.E. Production of spherical powders of VT6 alloy for use in selective laser melting technology / N.E. Ozerskoi, A.A. Popovich, B.S. Ermakov // Nauchno-tekhnicheskie vedomosti SPBPU. Estestvennye i inzhenernye nauki. 2019. Is.14. P.107–115.)
  19. 19. Liu, Y. A novel model of calculating particle sizes in plasma rotating electrode process for superalloys / Y. Liu, S. Liang, Z. Han, J. Song, Q. Wang // Powd. Techn. 2018. V.336. P.406–414.
  20. 20. Yamanoglu, R. Microstructural investigation of as cast and PREP atomised Ti-6Al-4V alloy / R. Yamanoglu, R.M. German, S. Karagoz, W.L. Bradbury, M. Zeren, W. Li, E.A. Olevsky // Powd. Met. 2011. V.54(5). P.604–607.
  21. 21. Wosch, E. Rapid solidification of steel droplets in the plasma-rotating-electrode-process / E. Wosch, S. Feldhaus, T. El Gammal // ISIJ Int. 1995. V.35. Is.6. P.764–770.
  22. 22. Cui, Y. Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4V alloy powder / Y. Cui, Y. Zhao, H. Numata, H. Bian, K. Wako, K. Yamanaka, K. Aoyagi, C. Zhang, A. Chiba // Powd, Techn. 2020. V.376. P.363–372.
  23. 23. Рудской, А.И. Физические процессы и технологии получения металлических порошков из расплава / А.И. Рудской, К.Н. Волков, С.Ю. Кондратьев, Ю.А. Соколов. – Санкт-Петербург: Изд-во Политехнического университета, 2018. 610 с. – @@Rudskoi, A.I. Physical processes and technologies for obtaining metal powders from melts / A.I. Rudskoi, K.N. Volkov, S.Y. Kondratev, Y.A. Sokolov. – Saint Petersburg: Izd-vo Politekhnicheskogo universiteta, 2018. 610 p.)
  24. 24. Fauchais, P.L. Thermal Spray Fundamentals: From Powder to Part / P.L. Fauchais, J.V.R. Heberlein, M.I. Boulos. – New York: Springer Science & Business Media, 2014. 1566 p.
  25. 25. Wolff, S.J. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V / S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, J. Cao // Acta Materialia. 2017. V.132. P.106–117.
  26. 26. Poling, B.E. The Properties of Gases and Liquids / B.E. Poling, J.M. Prausnitz, J.P. O’Connell. – New York: Mcgraw-Hill. 2001. 803 p.
  27. 27. Bich, E. The viscosity and thermal conductivity of pure monatomic gases from their normal boiling point up to 5000 K in the limit of zero density and at 0.101325 MPa / E. Bich, J. Millat, E. Vogel // J. Phys. Chem. Ref. Data. 1990. V.19. Is.6. P.1289–1305.
  28. 28. Mills, K.C. Recommended values of thermophysical properties for selected commercial alloys / K.C. Mills. – Cambridge: Woodhead publishing. 2002. 249 p.
  29. 29. Bartsch, K. Material modeling of Ti-6Al-4V alloy processed by laser powder bed fusion for application in macro-scale process simulation / K. Bartsch, D. Herzog, B. Bossen, C. Emmelmann // Mater. Sci.Eng: A. 2021. V.814. Art.141237.
  30. 30. Логачев, И.А. Исследование динамики изменения структуры сплава ВТ6 от слитка к сплавленному материалу / И.А. Логачев, М.В. Железный, О.А. Комолова, К.В. Григорович // Известия высших учебных заведений. Черная металлургия. 2020. Т.63, №8, С.623–630. – @@Logachev, I.A. Study of the dynamics of changes in the structure of VT6 alloy from ingot to alloyed material / I.A. Logachev, M.V. Zheleznyi, O.A. Komolova, K.V. Grigorovich // Izvestiia vysshikh uchebnykh zavedeniy. Chernaia metallurgiia. 2020. V.63. Is.8. P.623–630.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library