RAS Chemistry & Material ScienceМеталлы Russian Metallurgy

  • ISSN (Print) 0869-5733
  • ISSN (Online) 3034-5391

DETERMINATION OF THE DOSE OF MECHANICAL ENERGY REQUIRED FOR MILLING ALUMINUM ALLOY CHIPS IN A PLANETARY MILL

PII
S30345391S0869573325027787-1
DOI
10.7868/S3034539125027787
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
77-87
Abstract
The paper presents the results of modeling the motion of milling bodies in the working chamber of a planetary mill at different processing speeds. Quantitative estimates of the effect of processing speed on the kinematic characteristics of the motion of milling bodies, the number of collisions, the total energy loss during collisions and the average specific loss of collision energy are obtained. Changes in these parameters for «body-body» and «body-camera» collisions have been studied. Experimental studies have been conducted to study the effect of speed, machining time in a planetary mill and the ratio of chip mass to the mass of milling bodies on the transformation process of chip material. By comparing the calculated and experimental data, the minimum dose of mechanical energy was determined, which ensures the formation of flake-like particles and powder from the chip material.
Keywords
твердофазный рециклинг высокоэнергетический размол метод дискретных элементов стружка доля механической энергии порошок
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
33

References

  1. 1. Deng, L. Environmental-techno-economic analysis of decarbonization strategies for the Indian aluminum industry / L. Deng, S. Johnson, E. Gencer // Energy Conversion and Management. 2022. V.274. Art.116455.
  2. 2. Reck, B.K. Challenges in metal recycling / B.K. Reck, T.E. Graedel // Science. 2012. V.337(6095). P.690–695.
  3. 3. Gaustad, G. Improving aluminum recycling: A survey of sorting and impurity removal technologies / G. Gaustad, E. Olivetti, R. Kirchain // Resources, Conservation and Recycling. 2012. V.58. P.79–87.
  4. 4. Padamata, S.K. A review of secondary aluminum production and its byproducts // JOM. 2021. V.73(9). P.2603–2614.
  5. 5. Hao, H. Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production : the China 2025 case / Hao H., Qiao Q.Y., Liu Z.W., Zhao F.Q. // Resources, Conservation and Recycling. 2017. V.122. P.114–125.
  6. 6. Razi, K.M.H.A. Resourceful recycling process of waste desktop computers: a review study / K.M.H.A. Razi // Resources, Conservation and Recycling. 2016. V.110. P.30–47.
  7. 7. Wei, L.K. Producing metal powder from machining chips using ball milling process : A review / Wei L.K., Abd Rahim S.Z., Al Bakri Abdullah M.M., Yin, A.T.M., Ghazali M.F., Omar M.F., Neme O., Sandu A.V., Vizureanu P., Abdellah A.E.-H. // Materials. 2023. V.16. Art.4635.
  8. 8. Wan, B. Review of solid state recycling of aluminum chips / Wan B., Chen W., Lu T., Liu F., Jiang Z., Mao M. // Resources, Conservation and Recycling. 2017. V.125. P.37–47.
  9. 9. Rojas-Díaz, L.M. Production and characterization of aluminum powder derived from mechanical saw chips and its processing through powder metallurgy / Rojas-Díaz L.M., Verano-Jiménez L.E., Muñoz-García E., Esguerra-Arce J., Esguerra-Arce A. // Powder Techn. 2020. V.360. P.301–311.
  10. 10. Canakci, A. A novel method for the production of metal powders without conventional atomization process / Canakci A., Varol T. // J. Cleaner Production. 2015. V.99. P.312–319.
  11. 11. Çuvalcı, O. Effect of ball mill time and wet pre-milling on the fabrication of Ti powders by recycling Ti machining chips by planetary milling / O. Çuvalcı, T. Varol, S.B. Akçay, O. Güler, A. Çanakçı // Powder Techn. 2023. V. 426. Art.118637.
  12. 12. Batista, C.D. From machining chips to raw material for powder metallurgy : A review / C.D. Batista, A.A.M. Fernandes, M.T.F. Vieira, O. Emadinia // Materials. 2021. V.14. Art.5432.
  13. 13. Aborkin, A. Structure and mechanical properties of consolidated billets from recycled chip wastes of cast metal matrix composites of the Al-Si-SiC system / A. Aborkin, E. Prusov, V. Deev, D. Babin, D. Bokaryov, V. Ryabkova // J. Alloys Comp. 2025. V.1010. Art.177059.
  14. 14. Aborkin, A.V. The influence of mechanical processing of chip waste from cast Al-Si-B4C composites on the structure and properties of consolidated billets / A.V. Aborkin, E.S. Prusov, V.B. Deev, D.V. Bokaryov // Non-ferrous Metals. 2023. №2. P.41–46.
  15. 15. Gusev, V.G. Simulation of the energy–force parameters of planetary ball mill processing and estimation of their influence on the particle size in an AMg2 alloy / graphite composite powder / V.G. Gusev, A.V. Sobol’kov, A.V. Aborkin, M.I. Alymov // Russian Metallurgy. 2019. P.24–30.
  16. 16. Kozawa, T. Effect of ball collision direction on a wet mechanochemical reaction / T. Kozawa, K. Fukuyama, K. Kushimoto, S. Ishihara, J. Kano, A. Kondo, M. Naito // Sci. Reports. 2021. V.11. P.210.
  17. 17. Hirosawa, F. Dependence of the dissipated energy of particles on the sizes and numbers of particles and balls in a planetary ball mill / F. Hirosawa, T. Iwasaki // Chem. Eng. Res. Design. 2021. V.167. P.84–95.
  18. 18. Burmeister, C. Dry grinding in planetary ball mills: Evaluation of a stressing model / C. Burmeister, L. Titscher, S. Breitung-Faes, A. Kwade // Adv. Powder Techn. 2018. V.29. P.191–201.
  19. 19. Mindlin, R.D. Elastic spheres in contact under varying oblique forces / R.D. Mindlin, H. Deresiewicz // J. Appl. Mech. Trans. ASME. 1953. V.20. №3. P.327–344.
  20. 20. Aborkin, A.V. Influence of glar ratio on the energy-force conditions of grinding body collisions in a planetary mill / A.V. Aborkin, A.I. Elkin, V.V. Ryabkova, A.P. Bugayov, A.R. Bobozhanov, M.I. Alymov // Powder Metallurgy and Functional Coatings. 2025. V.19(1). P.5–14.
  21. 21. Aborkin, A.V. Influence of mechanical activation mode on morphology and phase composition of Al-2Mg-nC nanostructured composite material / A.V. Aborkin, I.A. Evdokimov, V.E. Vaganov, M.I. Alymov, D.V. Abramov, K.S. Khor’kov // Nanotechn. Russia. 2016. V.11. №5–6. P.297–304.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library